
HOW DO I HANDLE MY BIG DATA PROBLEM?

Amarnath Gupta

SDSC Summer Institute 2014, HPC Meets Big Data

WHAT IS A “BIG DATA” PROBLEM?

 111 data scientists were surveyed about their
current and future work and their problems

The “big data” problem in data science is not always about storage of exabytes
of data and computational grids with petaflop performance

WHAT IS MY BIG DATA PROBLEM? (TAKE-1)

 Some examples (sampled from your applications)
 Have very large geospatial data that I need to

manipulate and run analytics on
 Analyze activity logs (text, timestamps…) of many

millions of users to find patterns
 Computation on large graphs (e.g., social networks) is

complex
 Need to scale Natural Language Processing algorithms

to millions of documents
 Analyzing a large number of multi-modal streaming

data is difficult

THE KNOWLEDGE-GAP WE ADDRESS TODAY

 We will not try to define “big data”
 But we discuss several data situations and technologies

 We show
 Data scientists can encounter the “bigness barrier” much before

they approach huge numbers
 We contend that the knowledge gap is mostly related to:

 Providing the scientists and information analysts with too much of
too complex information

 Asking traditional data engineers to provide more analysis than
they are used to or integrating data they are not used to

 Managing the economics of information
 Should we go buy a bigger, faster machine, newer software, or manage

the problem ourselves with more programming?
 Figuring out what technology to align with for “my specific problem

space”
 When and how do HPC techniques meet “big data”?

BIG DATA AND ANALYTICS

Angle 1: A key problem with a lot of real world datasets is sparsity. The higher the
dimensionality of the data, it is harder to build statistical models on a small dataset.

Angle 2: Some problems are just naturally large, and most current algorithms are
inefficient, and many serious computations need a cluster of machines.

Angle 3: It is often the case that algorithms that work on a relatively small amount of data
do very well with larger data. So one can research on a small sample, and then on larger
data on analytical software (assuming it can support a ton of data) to construct models.

Angle 4: There are whole classes of problems do not work on small datasets, and need
extremely large unlabeled sets of data to draw statistical conclusions on their own by
minimizing energy functions under constraints.

Angle 5: A lot of data are collected about user behavior. To create recommendation
engines and behavior prediction methods, we need a sufficient data set to construct
features that are adequate to predict the behavior of every user.

Dimitri Belenco, Google

WHAT HAPPENS WHEN

 A standard analysis
program receives more
data than it can handle?

 Simple example
 Edge Detection in images

with Canny’s algorithm

 What will happen if this
standard algorithm is
given an image that is 1
TB in size?

WHAT HAPPENS WHEN
 A database engineer who

knows SQL very well is asked
to perform potentially complex
temporal analysis on data:
 Find time-partitions in data

signifying episodes
 relationship between HR

variability and GSR

0

50

100

150

200

1
50

84
10

16
7

15
25

0
20

33
3

25
41

6
30

49
9

35
58

2
40

66
5

45
74

8
50

83
1

55
91

4
60

99
7

66
08

0
71

16
3

76
24

6
81

32
9

heart rate

hr

0
5000

10000
15000
20000
25000
30000

1
61

73
12

34
5

18
51

7
24

68
9

30
86

1
37

03
3

43
20

5
49

37
7

55
54

9
61

72
1

67
89

3
74

06
5

80
23

7

accel_magnitude accel_magnit
ude

0
10
20
30
40

1
50

84
10

16
7

15
25

0
20

33
3

25
41

6
30

49
9

35
58

2
40

66
5

45
74

8
50

83
1

55
91

4
60

99
7

66
08

0
71

16
3

76
24

6
81

32
9

galvanic skin response

gsr

0
20
40
60
80

100
120

1
50

84
10

16
7

15
25

0
20

33
3

25
41

6
30

49
9

35
58

2
40

66
5

45
74

8
50

83
1

55
91

4
60

99
7

66
08

0
71

16
3

76
24

6
81

32
9

skin_temp skin_temp

0
0.5

1
1.5

2
2.5

1
57

62
11

52
3

17
28

4
23

04
5

28
80

6
34

56
7

40
32

8
46

08
9

51
85

0
57

61
1

63
37

2
69

13
3

74
89

4
80

65
5

steps steps

WHAT HAPPENS WHEN

 A biologist in a company
wants to know which
antibodies (from a database)
have actually worked (as per
publications) in experiments
related to their effects on
proteins of a specific family
(as per a protein
classification scheme)
 Integration between

relational, textual and
hierarchical data

 Direct analogs in commercial
world

THE V-BASED CHARACTERIZATION OF “BIG
DATA”

 Volume
 The amount of data

 Velocity
 The speed of data going in and out, and hence the amount of

time that is available to process one unit of information
 Variety

 The range of data sources, types, operations within and across
types

 Valence
 The complex inter-relatedness of data

 Veracity
 The degree of uncertainty and trustworthiness in the data

 Variability
 Many options or variable interpretations confound analysis

THE VOLUME PROBLEM

 Why is the data volume “big”?
 A single data item to be processed at a time is

inherently large
 A single data item is not large but the collection to

be processed is large
 The data volume of the collection is not excessively

large per se, but the computing operations access
the data too many times, perhaps through too many
IO operations

THE VELOCITY PROBLEM

 Why is “velocity” a problem?
 The data rate is faster than the processing rate
 The data arrives fast and continuously, so only a

limited amount of time can be spent on a data
element

 The results must be produced within a bounded
(usually small) time

 Additional complications
A computation on the streaming data must be processed

by using disk-resident data which is IO limited

THE VARIETY PROBLEM – DATA GENRES

 Structured Data
 Relations – tables – DBMS: Oracle, PostgreSQL
 Nested relations – HTML tables – DBMS: Oracle Object Relational

 Unstructured Data
 Text – the content needs to be retrieved/analyzed independent
 of its structure – Apache Solr
 Images and Videos

 Semi-structured Data
 XML – direct XML, PowerPoint, Word files, … DBMS: MongoDB
 JSON -- DBMS: MongoDB
 Graph-structured data – social networks, citation networks, …

 DBMS: Neo4j, OrientDB

 Array-structured data – images, matrix operations, simulation outputs
 RasDaMan, SciDB

 Domain specific Structures
 HDF, NetCDF – for scientific data
 Time series
 …

There are data
management
products for
each of these
genres. Many
of them now
have a
scalable
solution

What happens when you have a data integration problem involving all these data
genres?

THE VERACITY PROBLEM

 Veracity is not necessarily a “big data” problem
 “It was raining in San Diego around 9 am today”

 Pick an arbitrary place in San Diego at 9:02 am
 Can we say that it was raining there at that time? – perhaps only

probabilistically
 Veracity and “big data”

 Not every data item or collection comes with an uncertainty
model

 If there a k data sets, each having its own uncertainty model,
determining of their “joint” uncertainty model becomes a huge
challenge

 How to produce the “most certain” result of any data query
operation?

 Increases time and space complexity

THE VALENCE PROBLEM

 Definition
 Degree of interdependency among data items of big data apps

that are not embarrassingly parallel
 Structural dependency

 nested relations, trees, graphs
 State-based dependency

 correlated values in a computation

 Issues
 A computation step needs all related objects of a given object

 Possibly filtered by predicates on the properties of and relationships
between these objects

 As data gets larger
 Connection points get larger and fetching the web of correlated data

becomes more expensive

SOME “STANDARD” SOLUTIONS

 For geospatial data
 ArcGIS, which has a raster management module

 For large data
 ArcSDE is used to interface with a relational back-end
 ArcSDE handles data exchange and transformation

 The solution for large arrays is through relational database operations
 For image data

 MATLab, a common software for scientific image analysis
 Parallel Computing Toolbox provides a parallel for-loop for multicore computers.
 Distributed Computing Server allows parallel execution in parallel on clusters of

machines
 The blockproc function in Image Processing Toolbox operates on big images by

processing them efficiently a block at a time. These computations run in parallel
on multiple cores and GPUs when used with Parallel Computing Toolbox

in_file = ‘myLargeImage.tif';
h = fspecial('gaussian',5,2); % some function
myFun = @(block_struct) imfilter(block_struct.data,h);
block_size = [64 64];
border_size = [2 2];
out_file = 'output.tif'; blockproc(in_file,block_size,myFun, 'BorderSize',border_size,'Destination',out_file);

http://www.mathworks.com/help/images/ref/blockproc.html

RASDAMAN

 Native array management system
 Basic structure is derived from C/C++

 Declare a type T
 Declare an array type A of type T
 Declare a collection (set) of the array type A
 Query

 for all simulations conducted where temperature
difference exceeds 10

http://www.rasdaman.org

http://www.rasdaman.org/

A short tutorial

RASDAMAN

SOME FUNDAMENTAL STRATEGIES FOR BIG
DATA
 Parallelism

 Pipelined parallelism
 Partitioned parallelism
 Inter-query parallelism
 Intra-query parallelism

 Analytical computation performed close to data
 Reduce data movement and communication cost
 Allow analytical engine to inter-operate with data engine

 Interleave data and analysis operations
 Elasticity

 Automatically scaling out resources on demand
 Storage and computational elasticity

 Multiple models of computation within same platform
 Many modern DBMSs Map-reduce and relational operations

PIPELINED PARALLELISM

 The output of operation A is consumed by another
operation B, before A has produced the entire
output

 Many machines, each doing one step in a multi-
step process

 Does not scale up well when:
– the computation does not provide sufficiently long chain to

provide a high degree of parallelism:
– relational operators do not produce output until all inputs

have been accessed – block, or
– A’s computation cost is much higher than that of B

DATA PARTITIONED PARALLELISM

 Many machines performing the same

operation on different pieces of data
 Intraquery,
 interquery,
 intraoperation,
 interoperation

The parallelism behind
MapReduce

21

PARTITIONING
 Partition a data object into segments and

distribute them to different processors
 Maximize processing at each individual

processor
 Minimize data shipping across boundaries

 Query types:

 scan a data set,
 point queries (A = v),
 range queries (v < A and A < v’)

PARTITIONING STRATEGIES

N disks, a relation R
 Round-robin: send the j-th tuple of R to the disk number j mod N

 Even distribution: good for scanning
 Not good for equal joins (point queries) and range queries (all disks

have to be involved for the search)

 Range partitioning: partitioning attribute A, vector [v1, …, vn-1]
 send tuple t to disk j if t[A] in [vj-1, vj]
 good for point and range queries on partitioning attributes (using only

a few disks, while leaving the others free)
 Execution skew: distribution may not be even, and all operations occur

in one or few partitions (scanning)

 Hash partitioning: hash function f(t) in the range of [0, n-1]
 Send tuple t to disk f(t)
 good for point queries on partitioning attributes, and sequential

scanning if the hash function is even
 Not good for point queries on non-partitioning attributes and range

queries

INTERQUERY VS. INTRAQUERY PARALLELISM

 Inter-query: different queries or transactions
execute in parallel

 Intra-query: a single query in parallel on
multiple processors
 Inter-operation: operator tree
 Intra-operation: parallelize the same operation

on different sets of the same data objects
 Parallel data loading
 Parallel sorting
 Parallel join
 Selection, projection, aggregation

WHAT IS MY BIG DATA PROBLEM? (TAKE-2)

 Some examples (a data-centric view)
 Large geospatial data

 Integration of arrays with geo-semantics

 Analyze large activity logs
 Temporal text with named entities

 Retrieval and computation on graphs
 Partitioning and clustering on selected connected subgraphs

 Text analytics and NLP
 Topic modeling with background knowledge

 Streaming data analytics
 In-stream processing and in-memory systems

ARRAY AS A NATURAL DATA ABSTRACTION

 Many different problem areas and problem
solving techniques operate on arrays
 Spatial processing and simulations
 Image/video processing and computer vision

Multi-spectral images
 Biological sequence analysis
 Linear algebra problems
 Some graph problems
 Time-series data analysis

Financial analysis

“BIG DATA” IN NATURAL LANGUAGE PROCESSING

 Unstructured data management
 Pig in Natural Language Processing (courtesy

neofone.de)

THE OPEN SOURCE BIG DATA STACK

Courtesy: AsterixDB group

NAMED ENTITY RECOGNITION

 “Four years after becoming part of Disney, Marvel has emerged as a creative
juggernaut for the company as we continue to introduce its rich universe of
characters into a variety of businesses including movies, television, theme parks,
and consumer products” – Disney Annual Report, 2013

 Which of the several possible entities does a
surface term refer to?
 Computation of 4 probabilities

 P(entity), P(surface term), P(surface term | entity),
P(entity | surface term)

 P(entity | surface form) = count(entity, surface form) /
count(surface form)

 Estimate using the number of Wikipedia links

FROM NER TO PIG LATIN

parsed = LOAD 'enwiki-20111207-pages-articles.xml'‚
 USING pignlproc.storage.ParsingWikipediaLoader('en')
 AS (title, id, pageUrl, text, redirect, links, headers, paragraphs);
noredirect = FILTER parsed BY redirect IS NOT NULL;
projected = FOREACH noredirect GENERATE title, text, links, paragraphs;
sentences = FOREACH projected GENERATE title,
flatten(pignlproc.evaluation.SentencesWithLink(text, links, paragraphs));
stored = FOREACH sentences GENERATE title, sentenceOrder, linkTarget, linkBegin, linkEnd,
sentence; ordered = ORDER stored BY linkTarget ASC, title ASC, sentenceOrder ASC
STORE ordered INTO '$OUTPUT/$LANG/sentences_with_links'

sentences = LOAD '$INPUT/$LANG/sentences_with_links'
 AS (title: chararray, sentenceOrder: int, linkTarget: chararray, linkBegin: int, linkEnd: i
wikiuri_types = LOAD '$INPUT/$LANG/wikiuri_to_types' AS (wikiuri: chararray, typeuri: chararra
type_names = LOAD '$TYPE_NAMES' AS (typeuri: chararray, typename: chararray);
-- Perform successive joins to find the OpenNLP typename of the linkTarget
joined =
joined_projected = FOREACH joined GENERATE wikiuri, typename;
joined2 = JOIN joined_projected BY wikiuri, sentences BY linkTarget;
result = FOREACH joined2 GENERATE title, sentenceOrder, typename, linkBegin, linkEnd, sente

RELATIONAL DATA -- ROW AND COLUMN STORES

 A modern relational database system
 Designed for scale-out scalability
 Massively parallel SQL engine
 Distributed storage – takes advantage of

different storage layers
 Inter-operates with Hadoop

Allows users to perform some computations on
Hadoop

 Designed as a column store or offers a hybrid of
row and column stores

30

ROW STORES
 Row based tables have advantages in the

following circumstances:
 The application needs to only process a single record at

one time (many selects and/or updates of single records).
 The application typically needs to access a complete record

(or row).
 The columns contain mainly distinct values so that the

compression rate would be low.
 Neither aggregations nor fast searching are required.
 The table has a small number of rows (e. g. configuration

tables).

COLUMN STORES
 Column-based tables have advantages in the

following circumstances:
 Calculations are typically executed on single or a few

columns only.
 The table is searched based on values of a few columns.
 The table has a large number of columns, and more can be

added.
 The table has a large number of rows and columnar

operations are required (aggregate, scan etc.)
 High compression rates can be achieved because the

majority of the columns contain only few distinct values
(compared to number of rows).

HANDLING GENOMIC DATA WITH VERTICA

BACKUP SLIDES

MIKE STONEBRAKER’S VIEWPOINT – 1

 The “big data” problem can be thought of as different
combinations of data characteristics and analytical needs
problems.

 Big Volume – Little Analytics
 Well addressed by database and data warehouse crowd who are

pretty good at SQL analytics on
 Hundreds of nodes and Petabytes of data

 Big Data – Big Analytics
 Complex math operations (machine learning, clustering, trend

detection, ….)
 the world of the “quants” and data miners
 Mostly specified as linear algebra on matrix data

 A dozen or so common ‘inner loops’
 Matrix multiplication, QR decomposition, SVD decomposition, Linear

regression, …

MIKE STONEBRAKER’S VIEWPOINT – 2

 Big Velocity Data
 Big pattern - little state (electronic trading)

 Find the occurrence of ‘IBM down’ followed within 100 msec
by a ‘MSFT down’

 Complex event processing (CEP) is focused on this problem
 Patterns in a fire hose

 Big state - little pattern
 For every security, assemble my real-time global position
 And alert me if my exposure is greater than X
 Looks like high performance OLTP where we want to update a

database at very high speed
 Big state – big pattern?

MIKE STONEBRAKER’S VIEWPOINT – 3

 Big Variety
 A typical enterprise has many (sometimes

thousands of) operational systems
 Only a few get into a structured, managed database
 What about the rest?

 For the remaining data
 One has to look at and be scalable to 1000s of sites
 Deal with incomplete, conflicting, and incorrect data

 Be incremental because the task is never
done

	How do I Handle My Big Data Problem?
	What is a “big Data” problem?
	What is my big data problem? (Take-1)
	The knowledge-gap we address today �
	Big data and analytics
	What happens when
	What happens when
	What happens when
	The V-based characterization of “big Data”
	The volume problem
	The velocity problem
	The variety problem – data genres
	The veracity problem
	The valence problem
	some “standard” solutions
	rasdaman
	rasdaman
	Some fundamental strategies for big data
	Pipelined parallelism
	Data Partitioned parallelism
	Partitioning
	Partitioning strategies
	Interquery vs. intraquery parallelism
	What is my big data problem? (Take-2)
	Array as a natural data abstraction
	“Big Data” in natural language processing
	The Open Source Big Data Stack
	Named entity recognition
	From NER to PIG Latin
	Relational Data -- Row and Column Stores
	ROW STORES
	Column stores
	Handling genomic data with vertica
	Backup slides
	Mike stonebraker’s viewpoint – 1
	Mike stonebraker’s viewpoint – 2
	Mike stonebraker’s viewpoint – 3

