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WHAT IS A “BIG DATA” PROBLEM? 

 111 data scientists were surveyed about their 
current and future work and their problems 

The “big data” problem in data science is not always about storage of exabytes 
of data and computational grids with petaflop performance 



WHAT IS MY BIG DATA PROBLEM? (TAKE-1) 

 Some examples (sampled from your applications) 
 Have very large geospatial data that I need to 

manipulate and run analytics on 
 Analyze activity logs (text, timestamps…) of many 

millions of users to find patterns 
 Computation on large graphs (e.g., social networks) is 

complex 
 Need to scale Natural Language Processing algorithms 

to millions of documents 
 Analyzing a large number of multi-modal streaming 

data is difficult 



THE KNOWLEDGE-GAP WE ADDRESS TODAY  
 

 We will not try to define “big data” 
 But we discuss several data situations and technologies 

 We show 
 Data scientists can encounter the “bigness barrier” much before 

they approach huge numbers 
 We contend that the knowledge gap is mostly related to: 

 Providing the scientists and information analysts with too much of 
too complex information 

 Asking traditional data engineers to provide more analysis than 
they are used to or integrating data they are not used to 

 Managing the economics of information  
 Should we go buy a bigger, faster machine, newer software, or manage 

the problem ourselves with more programming? 
 Figuring out what technology to align with for “my specific problem 

space” 
 When and how do HPC techniques meet “big data”? 



BIG DATA AND ANALYTICS 

Angle 1: A key problem with a lot of real world datasets is sparsity. The higher the 
dimensionality of the data, it is harder to build statistical models on a small dataset. 
 
Angle 2: Some problems are just naturally large, and most current algorithms are 
inefficient, and many serious computations need a cluster of machines. 
 
Angle 3: It is often the case that algorithms that work on a relatively small amount of data 
do very well with larger data. So one can research on a small sample, and then on larger 
data on analytical software (assuming it can support a ton of data) to construct models.  
 
Angle 4: There are whole classes of problems do not work on small datasets, and need 
extremely large unlabeled sets of data to draw statistical conclusions on their own by 
minimizing energy functions under constraints. 
 
Angle 5: A lot of data are collected about user behavior. To create recommendation 
engines and behavior prediction methods, we need a sufficient data set to construct 
features that are adequate to predict the behavior of every user. 

Dimitri Belenco, Google 



WHAT HAPPENS WHEN 

 A standard analysis 
program receives more 
data than it can handle? 

 Simple example 
 Edge Detection in images 

with Canny’s algorithm 

 What will happen if this 
standard algorithm is 
given an image that is 1 
TB in size? 



WHAT HAPPENS WHEN 
 A database engineer who 

knows SQL very well is asked 
to perform potentially complex 
temporal analysis on data: 
 Find time-partitions in data 

signifying episodes 
 relationship between HR 

variability and GSR 
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WHAT HAPPENS WHEN 

 A biologist in a company 
wants to know which 
antibodies (from a database) 
have actually worked (as per 
publications) in experiments 
related to their effects on 
proteins of a specific family 
(as per a protein 
classification scheme) 
 Integration between 

relational, textual and 
hierarchical data 

 Direct analogs in commercial 
world 



THE V-BASED CHARACTERIZATION OF “BIG 
DATA” 

 Volume 
 The amount of data 

 Velocity 
 The speed of data going in and out, and hence the amount of 

time that is available to process one unit of information 
 Variety 

 The range of data sources, types, operations within and across 
types 

 Valence 
 The complex inter-relatedness of data 

 Veracity 
 The degree of uncertainty and trustworthiness in the data 

 Variability 
 Many options or variable interpretations confound analysis 



THE VOLUME PROBLEM 

 Why is the data volume “big”? 
 A single data item to be processed at a time is 

inherently large  
 A single data item is not large but the collection to 

be processed is large 
 The data volume of the collection is not excessively 

large per se, but the computing operations access 
the data too many times, perhaps through too many 
IO operations 
 



THE VELOCITY PROBLEM 

 Why is “velocity” a problem? 
 The data rate is faster than the processing rate 
 The data arrives fast and continuously, so only a 

limited amount of time can be spent on a data 
element 

 The results must be produced within a bounded 
(usually small) time  

 Additional complications 
A computation on the streaming data must be processed 

by using disk-resident data which is IO limited 



THE VARIETY PROBLEM – DATA GENRES 

 Structured Data 
 Relations – tables – DBMS: Oracle, PostgreSQL 
 Nested relations – HTML tables – DBMS: Oracle Object Relational 

 Unstructured Data 
 Text – the content needs to be retrieved/analyzed independent  
 of its structure – Apache Solr 
 Images and Videos 

 Semi-structured Data 
 XML – direct XML, PowerPoint, Word files, … DBMS: MongoDB 
 JSON -- DBMS: MongoDB 
 Graph-structured data – social networks, citation networks, … 

 DBMS: Neo4j, OrientDB 

 Array-structured data – images, matrix operations, simulation outputs 
 RasDaMan, SciDB 

 Domain specific Structures 
 HDF, NetCDF – for scientific data 
 Time series 
 … 

 
 

There are data 
management 
products for 
each of these 
genres. Many 
of them now 
have a 
scalable 
solution 

What happens when you have a data integration problem involving all these data 
genres? 



THE VERACITY PROBLEM 

 Veracity is not necessarily a “big data” problem 
 “It was raining in San Diego around 9 am today” 

 Pick an arbitrary place in San Diego at 9:02 am  
 Can we say that it was raining there at that time? – perhaps only 

probabilistically 
 Veracity and “big data” 

 Not every data item or collection comes with an uncertainty 
model 

 If there a k data sets, each having its own uncertainty model, 
determining of their “joint” uncertainty model becomes a huge 
challenge 

 How to produce the “most certain” result of any data query 
operation? 

 Increases time and space complexity  



THE VALENCE PROBLEM 

 Definition 
 Degree of interdependency among data items of big data apps 

that are not embarrassingly parallel 
 Structural dependency 

 nested relations, trees, graphs 
 State-based dependency 

 correlated values in a computation  

 Issues 
 A computation step needs all related objects of a given object 

 Possibly filtered by predicates on the properties of and relationships 
between these objects 

 As data gets larger 
 Connection points get larger and fetching the web of correlated data 

becomes more expensive 



SOME “STANDARD” SOLUTIONS 

 For geospatial data 
 ArcGIS, which has a raster management module 

 For large data 
 ArcSDE is used to interface with a relational back-end 
 ArcSDE handles data exchange and transformation 

 The solution for large arrays is through relational database operations 
 For image data 

 MATLab, a common software for scientific image analysis 
 Parallel Computing Toolbox provides a parallel for-loop for multicore computers.  
 Distributed Computing Server allows parallel execution in parallel on clusters of 

machines 
 The blockproc function in Image Processing Toolbox operates on big images by 

processing them efficiently a block at a time. These computations run in parallel 
on multiple cores and GPUs when used with Parallel Computing Toolbox  

in_file = ‘myLargeImage.tif'; 
h = fspecial('gaussian',5,2); % some function 
myFun = @(block_struct) imfilter(block_struct.data,h);  
block_size = [64 64];  
border_size = [2 2];  
out_file = 'output.tif'; blockproc(in_file,block_size,myFun, 'BorderSize',border_size,'Destination',out_file); 

http://www.mathworks.com/help/images/ref/blockproc.html


RASDAMAN 

 Native array management system 
 Basic structure is derived from C/C++ 

 Declare a type T 
 Declare an array type A of type T 
 Declare a collection (set) of the array type A 
 Query 

 for all simulations conducted where temperature 
difference exceeds 10  

 
 

http://www.rasdaman.org  

http://www.rasdaman.org/


A short tutorial 

RASDAMAN 



SOME FUNDAMENTAL STRATEGIES FOR BIG 
DATA 
 Parallelism 

 Pipelined parallelism 
 Partitioned parallelism 
 Inter-query parallelism 
 Intra-query parallelism 

 Analytical computation performed close to data 
 Reduce data movement and communication cost 
 Allow analytical engine to inter-operate with data engine 

 Interleave data and analysis operations 
 Elasticity 

 Automatically scaling out resources on demand  
 Storage and computational elasticity 

 Multiple models of computation within same platform 
 Many modern DBMSs Map-reduce and relational operations 



PIPELINED PARALLELISM 

 The output of operation A is consumed by another 
operation B, before A has produced the entire 
output 

 Many machines, each doing one step in a multi-
step process 

  Does not scale up well when: 
– the computation does not provide sufficiently long chain to 

provide a high degree of parallelism:  
– relational operators do not produce output until all inputs 

have been accessed – block, or  
– A’s computation cost is much higher than that of B 



DATA PARTITIONED PARALLELISM 

 
 Many machines performing the same 

operation on different pieces of data 
 Intraquery,  
 interquery,  
 intraoperation,  
 interoperation 

The parallelism behind 
MapReduce 
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PARTITIONING 
 Partition a data object into segments and 

distribute them to different processors 
 Maximize processing at each individual 

processor 
 Minimize data shipping across boundaries 

 
 Query types:  

 scan a data set,  
 point queries (A = v),  
 range queries (v < A and A < v’) 

 



PARTITIONING STRATEGIES 
 
N disks, a relation R 
 Round-robin: send the j-th tuple of R to the disk number j mod N 

 Even distribution: good for scanning 
 Not good for equal joins (point queries) and range queries (all disks 

have to be involved for the search) 

 Range partitioning: partitioning attribute A, vector [v1, …, vn-1] 
 send tuple t to disk j if t[A] in [vj-1, vj] 
 good for point and range queries on partitioning attributes (using only 

a few disks, while leaving the others free) 
 Execution skew: distribution may not be even, and all operations occur 

in one or few partitions (scanning) 

 Hash partitioning: hash function f(t) in the range of [0, n-1] 
 Send tuple t to disk f(t) 
 good for point queries on partitioning attributes, and sequential 

scanning if the hash function is even 
 Not good for point queries on non-partitioning attributes and range 

queries  



INTERQUERY VS. INTRAQUERY PARALLELISM 

 Inter-query: different queries or transactions 
execute in parallel 

 Intra-query: a single query in parallel on 
multiple processors 
 Inter-operation: operator tree 
 Intra-operation: parallelize the same operation 

on different sets of the same data objects 
 Parallel data loading 
 Parallel sorting 
 Parallel join 
 Selection, projection, aggregation 



WHAT IS MY BIG DATA PROBLEM? (TAKE-2) 

 Some examples (a data-centric view) 
 Large geospatial data  

 Integration of arrays with geo-semantics 

 Analyze large activity logs  
 Temporal text with named entities 

 Retrieval and computation on graphs 
 Partitioning and clustering on selected connected subgraphs 

 Text analytics and NLP 
 Topic modeling with background knowledge 

 Streaming data analytics 
 In-stream processing and in-memory systems 



ARRAY AS A NATURAL DATA ABSTRACTION 

 Many different problem areas and problem 
solving techniques operate on arrays 
 Spatial processing and simulations 
 Image/video processing and computer vision 

Multi-spectral images 
 Biological sequence analysis 
 Linear algebra problems 
 Some graph problems 
 Time-series data analysis 

Financial analysis 



“BIG DATA” IN NATURAL LANGUAGE PROCESSING 

 Unstructured data management 
 Pig in Natural Language Processing (courtesy 

neofone.de) 



THE OPEN SOURCE BIG DATA STACK 

Courtesy: AsterixDB group 



NAMED ENTITY RECOGNITION 

 “Four years after becoming part of Disney, Marvel has emerged as a creative 
juggernaut for the company as we continue to introduce its rich universe of 
characters into a variety of businesses including movies, television, theme parks, 
and consumer products” – Disney Annual Report, 2013 

 Which of the several possible entities does a 
surface term refer to? 
 Computation of 4 probabilities 

 P(entity), P(surface term), P(surface term | entity), 
P(entity | surface term) 

 P(entity | surface form) = count(entity, surface form) / 
count(surface form) 

 Estimate using the number of Wikipedia links 
 



FROM NER TO PIG LATIN 

 
parsed = LOAD 'enwiki-20111207-pages-articles.xml'‚  
 USING pignlproc.storage.ParsingWikipediaLoader('en')  
                AS (title, id, pageUrl, text, redirect, links, headers, paragraphs); 
noredirect = FILTER parsed BY redirect  IS NOT NULL;  
projected = FOREACH noredirect GENERATE title, text, links, paragraphs; 
sentences = FOREACH projected GENERATE title, 
flatten(pignlproc.evaluation.SentencesWithLink( text, links, paragraphs));  
stored = FOREACH sentences GENERATE title, sentenceOrder, linkTarget, linkBegin, linkEnd, 
sentence; ordered = ORDER stored BY linkTarget ASC, title ASC, sentenceOrder ASC 
STORE ordered INTO '$OUTPUT/$LANG/sentences_with_links' 

sentences = LOAD '$INPUT/$LANG/sentences_with_links'  
 AS (title: chararray, sentenceOrder: int, linkTarget: chararray, linkBegin: int, linkEnd: i     
wikiuri_types = LOAD '$INPUT/$LANG/wikiuri_to_types' AS (wikiuri: chararray, typeuri: chararra   
type_names = LOAD '$TYPE_NAMES' AS (typeuri: chararray, typename: chararray);  
-- Perform successive joins to find the OpenNLP typename of the linkTarget  
joined =   
joined_projected = FOREACH joined GENERATE wikiuri, typename;  
joined2 = JOIN joined_projected BY wikiuri, sentences BY linkTarget;  
result = FOREACH joined2 GENERATE title, sentenceOrder, typename, linkBegin, linkEnd, sente  



RELATIONAL DATA -- ROW AND COLUMN STORES 

 A modern relational database system 
 Designed for scale-out scalability 
 Massively parallel SQL engine 
 Distributed storage – takes advantage of 

different storage layers 
 Inter-operates with Hadoop 

Allows users to perform some computations on 
Hadoop 

 Designed as a column store or offers a hybrid of 
row and column stores 
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ROW STORES 
 Row based tables have advantages in the 

following circumstances:   
 The application needs to only process a single record at 

one time (many selects and/or updates of single records).    
 The application typically needs to access a complete record 

(or row).    
 The columns contain mainly distinct values so that the 

compression rate would be low.    
 Neither aggregations nor fast searching are required.    
 The table has a small number of rows (e. g. configuration 

tables).    

 



COLUMN STORES 
 Column-based tables have advantages in the 

following circumstances:   
 Calculations are typically executed on single or a few 

columns only.    
 The table is searched based on values of a few columns.    
 The table has a large number of columns, and more can be 

added.    
 The table has a large number of rows and columnar 

operations are required (aggregate, scan etc.)    
 High compression rates can be achieved because the 

majority of the columns contain only few distinct values 
(compared to number of rows).    

 



HANDLING GENOMIC DATA WITH VERTICA 



BACKUP SLIDES 



MIKE STONEBRAKER’S VIEWPOINT – 1  

 The “big data” problem can be thought of as different 
combinations of data characteristics and analytical needs 
problems. 

 Big Volume –  Little Analytics  
 Well addressed by database and data warehouse crowd who are 

pretty good at SQL analytics on  
 Hundreds of nodes and Petabytes of data  

 Big Data – Big Analytics  
 Complex math operations (machine learning, clustering, trend 

detection, ….)  
 the world of the “quants” and data miners 
 Mostly specified as linear algebra on matrix data  

 A dozen or so common ‘inner loops’  
 Matrix multiplication, QR decomposition, SVD decomposition, Linear 

regression, …  
 



MIKE STONEBRAKER’S VIEWPOINT – 2 

 Big Velocity Data 
 Big pattern - little state (electronic trading)  

 Find the occurrence of ‘IBM down’ followed within 100 msec 
by a ‘MSFT down’  

 Complex event processing (CEP) is focused on this problem  
 Patterns in a fire hose  

 Big state - little pattern  
 For every security, assemble my real-time global position  
 And alert me if my exposure is greater than X  
 Looks like high performance OLTP where we want to update a 

database at very high speed  
 Big state – big pattern? 



MIKE STONEBRAKER’S VIEWPOINT – 3 

 Big Variety  
 A typical enterprise has many (sometimes 

thousands of) operational systems  
 Only a few get into a structured, managed database 
 What about the rest?  

 For the remaining data 
 One has to look at  and be scalable to 1000s of sites  
 Deal with incomplete, conflicting, and incorrect data  

 Be incremental because the task is never 
done  
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