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WHAT IS A “BIG DATA” PROBLEM? 

 111 data scientists were surveyed about their 
current and future work and their problems 

The “big data” problem in data science is not always about storage of exabytes 
of data and computational grids with petaflop performance 



WHAT IS MY BIG DATA PROBLEM? (TAKE-1) 

 Some examples (sampled from your applications) 
 Have very large geospatial data that I need to 

manipulate and run analytics on 
 Analyze activity logs (text, timestamps…) of many 

millions of users to find patterns 
 Computation on large graphs (e.g., social networks) is 

complex 
 Need to scale Natural Language Processing algorithms 

to millions of documents 
 Analyzing a large number of multi-modal streaming 

data is difficult 



THE KNOWLEDGE-GAP WE ADDRESS TODAY  
 

 We will not try to define “big data” 
 But we discuss several data situations and technologies 

 We show 
 Data scientists can encounter the “bigness barrier” much before 

they approach huge numbers 
 We contend that the knowledge gap is mostly related to: 

 Providing the scientists and information analysts with too much of 
too complex information 

 Asking traditional data engineers to provide more analysis than 
they are used to or integrating data they are not used to 

 Managing the economics of information  
 Should we go buy a bigger, faster machine, newer software, or manage 

the problem ourselves with more programming? 
 Figuring out what technology to align with for “my specific problem 

space” 
 When and how do HPC techniques meet “big data”? 



BIG DATA AND ANALYTICS 

Angle 1: A key problem with a lot of real world datasets is sparsity. The higher the 
dimensionality of the data, it is harder to build statistical models on a small dataset. 
 
Angle 2: Some problems are just naturally large, and most current algorithms are 
inefficient, and many serious computations need a cluster of machines. 
 
Angle 3: It is often the case that algorithms that work on a relatively small amount of data 
do very well with larger data. So one can research on a small sample, and then on larger 
data on analytical software (assuming it can support a ton of data) to construct models.  
 
Angle 4: There are whole classes of problems do not work on small datasets, and need 
extremely large unlabeled sets of data to draw statistical conclusions on their own by 
minimizing energy functions under constraints. 
 
Angle 5: A lot of data are collected about user behavior. To create recommendation 
engines and behavior prediction methods, we need a sufficient data set to construct 
features that are adequate to predict the behavior of every user. 

Dimitri Belenco, Google 



WHAT HAPPENS WHEN 

 A standard analysis 
program receives more 
data than it can handle? 

 Simple example 
 Edge Detection in images 

with Canny’s algorithm 

 What will happen if this 
standard algorithm is 
given an image that is 1 
TB in size? 



WHAT HAPPENS WHEN 
 A database engineer who 

knows SQL very well is asked 
to perform potentially complex 
temporal analysis on data: 
 Find time-partitions in data 

signifying episodes 
 relationship between HR 

variability and GSR 
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WHAT HAPPENS WHEN 

 A biologist in a company 
wants to know which 
antibodies (from a database) 
have actually worked (as per 
publications) in experiments 
related to their effects on 
proteins of a specific family 
(as per a protein 
classification scheme) 
 Integration between 

relational, textual and 
hierarchical data 

 Direct analogs in commercial 
world 



THE V-BASED CHARACTERIZATION OF “BIG 
DATA” 

 Volume 
 The amount of data 

 Velocity 
 The speed of data going in and out, and hence the amount of 

time that is available to process one unit of information 
 Variety 

 The range of data sources, types, operations within and across 
types 

 Valence 
 The complex inter-relatedness of data 

 Veracity 
 The degree of uncertainty and trustworthiness in the data 

 Variability 
 Many options or variable interpretations confound analysis 



THE VOLUME PROBLEM 

 Why is the data volume “big”? 
 A single data item to be processed at a time is 

inherently large  
 A single data item is not large but the collection to 

be processed is large 
 The data volume of the collection is not excessively 

large per se, but the computing operations access 
the data too many times, perhaps through too many 
IO operations 
 



THE VELOCITY PROBLEM 

 Why is “velocity” a problem? 
 The data rate is faster than the processing rate 
 The data arrives fast and continuously, so only a 

limited amount of time can be spent on a data 
element 

 The results must be produced within a bounded 
(usually small) time  

 Additional complications 
A computation on the streaming data must be processed 

by using disk-resident data which is IO limited 



THE VARIETY PROBLEM – DATA GENRES 

 Structured Data 
 Relations – tables – DBMS: Oracle, PostgreSQL 
 Nested relations – HTML tables – DBMS: Oracle Object Relational 

 Unstructured Data 
 Text – the content needs to be retrieved/analyzed independent  
 of its structure – Apache Solr 
 Images and Videos 

 Semi-structured Data 
 XML – direct XML, PowerPoint, Word files, … DBMS: MongoDB 
 JSON -- DBMS: MongoDB 
 Graph-structured data – social networks, citation networks, … 

 DBMS: Neo4j, OrientDB 

 Array-structured data – images, matrix operations, simulation outputs 
 RasDaMan, SciDB 

 Domain specific Structures 
 HDF, NetCDF – for scientific data 
 Time series 
 … 

 
 

There are data 
management 
products for 
each of these 
genres. Many 
of them now 
have a 
scalable 
solution 

What happens when you have a data integration problem involving all these data 
genres? 



THE VERACITY PROBLEM 

 Veracity is not necessarily a “big data” problem 
 “It was raining in San Diego around 9 am today” 

 Pick an arbitrary place in San Diego at 9:02 am  
 Can we say that it was raining there at that time? – perhaps only 

probabilistically 
 Veracity and “big data” 

 Not every data item or collection comes with an uncertainty 
model 

 If there a k data sets, each having its own uncertainty model, 
determining of their “joint” uncertainty model becomes a huge 
challenge 

 How to produce the “most certain” result of any data query 
operation? 

 Increases time and space complexity  



THE VALENCE PROBLEM 

 Definition 
 Degree of interdependency among data items of big data apps 

that are not embarrassingly parallel 
 Structural dependency 

 nested relations, trees, graphs 
 State-based dependency 

 correlated values in a computation  

 Issues 
 A computation step needs all related objects of a given object 

 Possibly filtered by predicates on the properties of and relationships 
between these objects 

 As data gets larger 
 Connection points get larger and fetching the web of correlated data 

becomes more expensive 



SOME “STANDARD” SOLUTIONS 

 For geospatial data 
 ArcGIS, which has a raster management module 

 For large data 
 ArcSDE is used to interface with a relational back-end 
 ArcSDE handles data exchange and transformation 

 The solution for large arrays is through relational database operations 
 For image data 

 MATLab, a common software for scientific image analysis 
 Parallel Computing Toolbox provides a parallel for-loop for multicore computers.  
 Distributed Computing Server allows parallel execution in parallel on clusters of 

machines 
 The blockproc function in Image Processing Toolbox operates on big images by 

processing them efficiently a block at a time. These computations run in parallel 
on multiple cores and GPUs when used with Parallel Computing Toolbox  

in_file = ‘myLargeImage.tif'; 
h = fspecial('gaussian',5,2); % some function 
myFun = @(block_struct) imfilter(block_struct.data,h);  
block_size = [64 64];  
border_size = [2 2];  
out_file = 'output.tif'; blockproc(in_file,block_size,myFun, 'BorderSize',border_size,'Destination',out_file); 

http://www.mathworks.com/help/images/ref/blockproc.html


RASDAMAN 

 Native array management system 
 Basic structure is derived from C/C++ 

 Declare a type T 
 Declare an array type A of type T 
 Declare a collection (set) of the array type A 
 Query 

 for all simulations conducted where temperature 
difference exceeds 10  

 
 

http://www.rasdaman.org  

http://www.rasdaman.org/


A short tutorial 

RASDAMAN 



SOME FUNDAMENTAL STRATEGIES FOR BIG 
DATA 
 Parallelism 

 Pipelined parallelism 
 Partitioned parallelism 
 Inter-query parallelism 
 Intra-query parallelism 

 Analytical computation performed close to data 
 Reduce data movement and communication cost 
 Allow analytical engine to inter-operate with data engine 

 Interleave data and analysis operations 
 Elasticity 

 Automatically scaling out resources on demand  
 Storage and computational elasticity 

 Multiple models of computation within same platform 
 Many modern DBMSs Map-reduce and relational operations 



PIPELINED PARALLELISM 

 The output of operation A is consumed by another 
operation B, before A has produced the entire 
output 

 Many machines, each doing one step in a multi-
step process 

  Does not scale up well when: 
– the computation does not provide sufficiently long chain to 

provide a high degree of parallelism:  
– relational operators do not produce output until all inputs 

have been accessed – block, or  
– A’s computation cost is much higher than that of B 



DATA PARTITIONED PARALLELISM 

 
 Many machines performing the same 

operation on different pieces of data 
 Intraquery,  
 interquery,  
 intraoperation,  
 interoperation 

The parallelism behind 
MapReduce 
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PARTITIONING 
 Partition a data object into segments and 

distribute them to different processors 
 Maximize processing at each individual 

processor 
 Minimize data shipping across boundaries 

 
 Query types:  

 scan a data set,  
 point queries (A = v),  
 range queries (v < A and A < v’) 

 



PARTITIONING STRATEGIES 
 
N disks, a relation R 
 Round-robin: send the j-th tuple of R to the disk number j mod N 

 Even distribution: good for scanning 
 Not good for equal joins (point queries) and range queries (all disks 

have to be involved for the search) 

 Range partitioning: partitioning attribute A, vector [v1, …, vn-1] 
 send tuple t to disk j if t[A] in [vj-1, vj] 
 good for point and range queries on partitioning attributes (using only 

a few disks, while leaving the others free) 
 Execution skew: distribution may not be even, and all operations occur 

in one or few partitions (scanning) 

 Hash partitioning: hash function f(t) in the range of [0, n-1] 
 Send tuple t to disk f(t) 
 good for point queries on partitioning attributes, and sequential 

scanning if the hash function is even 
 Not good for point queries on non-partitioning attributes and range 

queries  



INTERQUERY VS. INTRAQUERY PARALLELISM 

 Inter-query: different queries or transactions 
execute in parallel 

 Intra-query: a single query in parallel on 
multiple processors 
 Inter-operation: operator tree 
 Intra-operation: parallelize the same operation 

on different sets of the same data objects 
 Parallel data loading 
 Parallel sorting 
 Parallel join 
 Selection, projection, aggregation 



WHAT IS MY BIG DATA PROBLEM? (TAKE-2) 

 Some examples (a data-centric view) 
 Large geospatial data  

 Integration of arrays with geo-semantics 

 Analyze large activity logs  
 Temporal text with named entities 

 Retrieval and computation on graphs 
 Partitioning and clustering on selected connected subgraphs 

 Text analytics and NLP 
 Topic modeling with background knowledge 

 Streaming data analytics 
 In-stream processing and in-memory systems 



ARRAY AS A NATURAL DATA ABSTRACTION 

 Many different problem areas and problem 
solving techniques operate on arrays 
 Spatial processing and simulations 
 Image/video processing and computer vision 

Multi-spectral images 
 Biological sequence analysis 
 Linear algebra problems 
 Some graph problems 
 Time-series data analysis 

Financial analysis 



“BIG DATA” IN NATURAL LANGUAGE PROCESSING 

 Unstructured data management 
 Pig in Natural Language Processing (courtesy 

neofone.de) 



THE OPEN SOURCE BIG DATA STACK 

Courtesy: AsterixDB group 



NAMED ENTITY RECOGNITION 

 “Four years after becoming part of Disney, Marvel has emerged as a creative 
juggernaut for the company as we continue to introduce its rich universe of 
characters into a variety of businesses including movies, television, theme parks, 
and consumer products” – Disney Annual Report, 2013 

 Which of the several possible entities does a 
surface term refer to? 
 Computation of 4 probabilities 

 P(entity), P(surface term), P(surface term | entity), 
P(entity | surface term) 

 P(entity | surface form) = count(entity, surface form) / 
count(surface form) 

 Estimate using the number of Wikipedia links 
 



FROM NER TO PIG LATIN 

 
parsed = LOAD 'enwiki-20111207-pages-articles.xml'‚  
 USING pignlproc.storage.ParsingWikipediaLoader('en')  
                AS (title, id, pageUrl, text, redirect, links, headers, paragraphs); 
noredirect = FILTER parsed BY redirect  IS NOT NULL;  
projected = FOREACH noredirect GENERATE title, text, links, paragraphs; 
sentences = FOREACH projected GENERATE title, 
flatten(pignlproc.evaluation.SentencesWithLink( text, links, paragraphs));  
stored = FOREACH sentences GENERATE title, sentenceOrder, linkTarget, linkBegin, linkEnd, 
sentence; ordered = ORDER stored BY linkTarget ASC, title ASC, sentenceOrder ASC 
STORE ordered INTO '$OUTPUT/$LANG/sentences_with_links' 

sentences = LOAD '$INPUT/$LANG/sentences_with_links'  
 AS (title: chararray, sentenceOrder: int, linkTarget: chararray, linkBegin: int, linkEnd: i     
wikiuri_types = LOAD '$INPUT/$LANG/wikiuri_to_types' AS (wikiuri: chararray, typeuri: chararra   
type_names = LOAD '$TYPE_NAMES' AS (typeuri: chararray, typename: chararray);  
-- Perform successive joins to find the OpenNLP typename of the linkTarget  
joined =   
joined_projected = FOREACH joined GENERATE wikiuri, typename;  
joined2 = JOIN joined_projected BY wikiuri, sentences BY linkTarget;  
result = FOREACH joined2 GENERATE title, sentenceOrder, typename, linkBegin, linkEnd, sente  



RELATIONAL DATA -- ROW AND COLUMN STORES 

 A modern relational database system 
 Designed for scale-out scalability 
 Massively parallel SQL engine 
 Distributed storage – takes advantage of 

different storage layers 
 Inter-operates with Hadoop 

Allows users to perform some computations on 
Hadoop 

 Designed as a column store or offers a hybrid of 
row and column stores 
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ROW STORES 
 Row based tables have advantages in the 

following circumstances:   
 The application needs to only process a single record at 

one time (many selects and/or updates of single records).    
 The application typically needs to access a complete record 

(or row).    
 The columns contain mainly distinct values so that the 

compression rate would be low.    
 Neither aggregations nor fast searching are required.    
 The table has a small number of rows (e. g. configuration 

tables).    

 



COLUMN STORES 
 Column-based tables have advantages in the 

following circumstances:   
 Calculations are typically executed on single or a few 

columns only.    
 The table is searched based on values of a few columns.    
 The table has a large number of columns, and more can be 

added.    
 The table has a large number of rows and columnar 

operations are required (aggregate, scan etc.)    
 High compression rates can be achieved because the 

majority of the columns contain only few distinct values 
(compared to number of rows).    

 



HANDLING GENOMIC DATA WITH VERTICA 



BACKUP SLIDES 



MIKE STONEBRAKER’S VIEWPOINT – 1  

 The “big data” problem can be thought of as different 
combinations of data characteristics and analytical needs 
problems. 

 Big Volume –  Little Analytics  
 Well addressed by database and data warehouse crowd who are 

pretty good at SQL analytics on  
 Hundreds of nodes and Petabytes of data  

 Big Data – Big Analytics  
 Complex math operations (machine learning, clustering, trend 

detection, ….)  
 the world of the “quants” and data miners 
 Mostly specified as linear algebra on matrix data  

 A dozen or so common ‘inner loops’  
 Matrix multiplication, QR decomposition, SVD decomposition, Linear 

regression, …  
 



MIKE STONEBRAKER’S VIEWPOINT – 2 

 Big Velocity Data 
 Big pattern - little state (electronic trading)  

 Find the occurrence of ‘IBM down’ followed within 100 msec 
by a ‘MSFT down’  

 Complex event processing (CEP) is focused on this problem  
 Patterns in a fire hose  

 Big state - little pattern  
 For every security, assemble my real-time global position  
 And alert me if my exposure is greater than X  
 Looks like high performance OLTP where we want to update a 

database at very high speed  
 Big state – big pattern? 



MIKE STONEBRAKER’S VIEWPOINT – 3 

 Big Variety  
 A typical enterprise has many (sometimes 

thousands of) operational systems  
 Only a few get into a structured, managed database 
 What about the rest?  

 For the remaining data 
 One has to look at  and be scalable to 1000s of sites  
 Deal with incomplete, conflicting, and incorrect data  

 Be incremental because the task is never 
done  
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